Impact of faulting on the depression morphology of Ulaagchinii Khar Lake in Mongolia

Authors

  • Altanbold Enkhbold Laboratory of Geopedology, Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia https://orcid.org/0000-0003-3810-449X
  • Ulambadrakh Khukhuudei Research Center of Geology and Mineral Resources, and Department of Geology and Geophysics, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia https://orcid.org/0000-0003-4570-7053
  • Yeong Bae Seong Department of Geography Education, Korea University, Seoul 02841, Korea https://orcid.org/0000-0001-6605-3912
  • Daariimaa Badarch Research Center of Geology and Mineral Resources, and Department of Geology and Geophysics, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia https://orcid.org/0009-0006-0042-3224
  • Ser-Od Tsedevdorj Department of Geography, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 14191, Mongolia https://orcid.org/0000-0001-5700-908X
  • Batzorig Batbold Laboratory of Geopedology, Department of Geography, School of Art and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia https://orcid.org/0000-0002-5195-5558
  • Byambabayar Ganbold Laboratory of Geopedology, Department of Geography, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia https://orcid.org/0000-0002-8406-4954

DOI:

https://doi.org/10.5564/mgs.v30i61.3855

Keywords:

Khangai Mountain, Morphometric analysis, Sobel filter, Lake depression, Magnetic anomaly, Bor Khyar dune

Abstract

The geomorphology of the Ulaagchinii Khar Lake depression is predominantly governed by tectonic faulting. Morphometric analysis identifies a distinct network of orthogonal faults that are prominently manifested in both topographic and bathymetric patterns. These fault systems primarily trend northwest-southeast and north-south, intersecting near the lake’s central region. This central zone is characterized by pronounced linear formations and abrupt shifts in elevation, as depicted in isobath profiles, indicative of tectonic subsidence along fault zones. The lake depression exhibits strong tectonic control, supported by a high hypsometric integral (HI=0.91) and a notably elongated basin shape index (Bs=2.81). Further evidence for a tectonic origin includes a major east-west oriented fault extending 40.8 km with a steep inclination of 35°, and a vertical relief energy of 274 m. Significant depth variations, reaching up to 47 m in the lake’s western sector, further reinforce the influence of faulting on its morphological configuration. Complementary geomagnetic anomaly data also correspond with these structural features, affirming the presence of active tectonic processes within the depression. The orthogonal fault systems have not only shaped the physical structure of the depression but have also influenced its hydrological regime by enhancing groundwater infiltration, thereby contributing to the lake’s freshwater characteristics. This research underscores that the current morphology and hydrological compartmentalization of Ulaagchinii Khar Lake are the result of an interplay between tectonically controlled fault activity and Late Quaternary dune deposition.

Downloads

Download data is not yet available.
Abstract
91

References

Anand, A.K., Pradhan, S.P. 2019. Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. Journal of Mountain Science, vol. 16(8), p. 1943-1961. https://doi.org/10.1007/s11629-018-5172-2

Bayasgalan, A., Jackson, J., McKenzie, D. 2005. Lithosphere rheology and active tectonics in Mongolia: relations between earthquake source parameters, gravity and GPS measurements. Geophysical Journal International, vol. 163(3), p. 1151-1179. https://doi.org/10.1111/j.1365-246X.2005.02764.x

Bayasgalan, A., Jackson, J., Ritz, J.F., Carretier, S. 1999. Forebergs', flower structures, and the development of large intra-continental strike-slip faults: the Gurvan Bogd fault system in Mongolia. Journal of Structural Geology, vol. 21(10), p. 1285-1302. https://doi.org/10.1016/S0191-8141(99)00064-4

Boyce, J.I., Pozza, M.R., Morris, W.A., Eyles, N., Doughty, M. 2002. High-Resolution Magnetic and Seismic Imaging of Basement Faults in Western Lake Ontario and Lake Simcoe, Canada. Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2002, p. 191-194 https://doi.org/10.4133/1.2927124

Byamba, J. 2009. Lithospheric Plate Tectonics. Byamba, J (Ed.) Geology and Mineral Resources of Mongolia, vol. IV, Soyombo Printing, Ulaanbaatar, p. 126-128. (in Mongolian)

Canty, M.J. 2014. Image Analysis, Classification and Change Detection in Remote Sensing. With Algorithms for ENVI/IDL and Python, Third Edition. CRC Press, p. 244-349 https://doi.org/10.1201/b17074

Carretier, S., Ritz, J.F., Jackson, J. Bayasgalan, A. 2002. Morphological dating of cumulative reverse fault scarps: examples from the Gurvan Bogd fault system, Mongolia. Geophysical Journal International, vol. 148(2), p. 256-277. https://doi.org/10.1046/j.1365-246X.2002.01007.x

Cohen, A.S. 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press. https://doi.org/10.1093/oso/9780195133530.001.0001

Cunningham, D. 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen. Earth and Planetary Science Letters, vol. 240(2), p. 436-444. https://doi.org/10.1016/j.epsl.2005.09.013

Cunningham, D. 2013. Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia. Journal of Structural Geology, vol. 46, p. 255-282. https://doi.org/10.1016/j.jsg.2012.08.010

Cunningham, D., Davies, S., Badarch, G. 2003. Crustal architecture and active growth of the Sutai Range, western Mongolia: a major intracontinental, intraplate restraining bend. Journal of Geodynamics, vol. 36(1-2), p. 169-191. https://doi.org/10.1016/S0264-3707(03)00046-2

Daarimaa, B., Baatarchuluun, Ts. 2017. Evaluation of the tectonic fault system of Mongolia based on geomagnetic anomaly fields. Geological Issues, vol. 15(01), p. 58–67. (In Mongolian with English abstract) https://journal.num.edu.mn/geology/article/view/2273

Das, B.C., Islam, A., Sarkar, B. 2022. Drainage Basin Shape Indices to Understanding Channel Hydraulics. Water Resources Management, vol. 36(8), p. 2523-2547. https://doi.org/10.1007/s11269-022-03121-4

Di Crescenzo, G., Santo, A. 2005. Debris slides-rapid earth flows in the carbonate massifs of the Campania region (Southern Italy): morphological and morphometric data for evaluating triggering susceptibility. Geomorphology, vol. 66(1-4), p. 255-276. https://doi.org/10.1016/j.geomorph.2004.09.015

Doljin, D., Yembuu, B. 2021. The relief and geomorphological characteristics of Mongolia. In: Yembuu, B. (eds) The Physical Geography of Mongolia, Springer International Publishing, p. 23-50. https://doi.org/10.1007/978-3-030-61434-8_3

El Hamdouni, R., Irigaray, C., Fernandez, T., Chacón, J., Keller, E.A. 2008. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, vol. 96(1-2), p. 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004

Enkhbold, A., Dorjsuren, B., Khukhuudei, U., Yadamsuren, G., Bardarch, D., Dorjgochoo, S., Gonchigjav, Y., Nyansuren, D., Ragchaa, G., Gedefaw, M. 2021b. Impact of faults on the origin of lake depressions: a case study of Bayan Nuur depression, North-west Mongolia, Central Asia. Geografia Fisica e Dinamica Quaternaria, vol. 44(1), p. 53-66. https://www.gfdq.glaciologia.it/index.php/gfdq/article/view/30

Enkhbold, A., Khukhuudei, U., Doljin, D. 2021a. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences, vol. 61(02), p. 35-43. https://doi.org/10.5564/pmas.v61i02.1758

Enkhbold, A., Khukhuudei, U., Doljin, D. 2024b. New geomorphological districts of lakes in Mongolia. Mongolian Journal of Geography and Geoecology, vol. 61(45), p. 1-18. (In Mongolian with English abstract) https://doi.org/10.5564/mjgg.v61i45.3235

Enkhbold, A., Khukhuudei, U., Kusky, T., Chun, X., Yadamsuren, G., Ganbold, B., Gerelmaa, T. 2022c. Morphodynamic development of the Terkhiin Tsagaan lake depression, Central Mongolia: implications for the relationships of faulting, volcanic activity, and lake depression formation. Journal of Mountain Science, vol. 19(9), p. 2451-2468. https://doi.org/10.1007/s11629-021-7144-1

Enkhbold, A., Khukhuudei, U., Kusky, T., Tsermaa, B., Doljin, D. 2022b. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: implications for the origin of lake depression in Mongolia. Physical Geography, vol. 43(6), p. 1-26. https://doi.org/10.1080/02723646.2021.1899477

Enkhbold, A., Khukhuudei, U., Seong, Y.B., Gonchigjav, Y., Dingjun, L., Ganbold, B. 2024a. Geomorphological study of the origin of Mongolian Altai Mountains Lake depressions: implications for the relationships between tectonic and glacial processes. Mongolian Geoscientist, vol. 29(58), p. 1-18. https://doi.org/10.5564/mgs.v29i58.3237

Farhan, Y., Mousa, R., Dagarah, A., Shtaya, D. 2016. Regional Hypsometric Analysis of the Jordan Rift Drainage Basins (Jordan) Using Geographic Information System. Open Journal of Geology, vol. 6(10), p. 1312-1343. https://doi.org/10.4236/ojg.2016.610096

Filosofov, V.P. 1967. The value of the map of potential relief energy for geomorphological and Neotectonic studies. Methods geomorphological. Novosibirsk: Science. Siberian Department. p. 193-198 (in Russian)

Florinsky, I.V. 1996. Quantitative topographic method of fault morphology recognition. Geomorphology, vol. 16(2), p. 103-119. https://doi.org/10.1016/0169-555X(95)00136-S

Ganas, A., Pavlides, S., Karastathis, V. 2005. DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology, vol. 65(3-4), p. 301-319. https://doi.org/10.1016/j.geomorph.2004.09.006

Gilvear, D., Bryant, R. 2016. Analysis of remotely sensed data for fluvial geomorphology and river science. Kondolf, G.M. and Piégay, H (Eds.). Tools in fluvial geomorphology, Chapter 6, p. 103-132. https://doi.org/10.1002/9781118648551.ch6

Grunert, J., Lehmkuhl, F. 2004. Aeolian sedimentation in arid and semi-arid environments of Western Mongolia. In: Smykatz-Kloss, W., Felix-Henningsen, P. (Eds) Paleoecology of Quaternary drylands. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 195-218. https://doi.org/10.1007/978-3-540-44930-0_11

Grunert, J., Lehmkuhl, F., Walther, M. 2000. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International, vol. 65-66, p. 171-192. https://doi.org/10.1016/S1040-6182(99)00043-9

Hassen, M.B., Deffontaines, B., Turki, M.M. 2014. Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern Atlas of Tunisia. Quaternary International, vol. 338, p. 99-112. https://doi.org/10.1016/j.quaint.2014.05.009

Hooper, D.M., Bursik, M.I., Webb, F.H. 2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA. Remote Sensing of Environment, vol. 84(2), p. 255-267. https://doi.org/10.1016/S0034-4257(02)00110-4

Jacques, P.D., Salvador, E.D., Machado, R., Grohmann, C.H., Nummer, A.R. 2014. Application of morphometry in neotectonic studies at the eastern edge of the Paraná Basin, Santa Catarina State, Brazil. Geomorphology, vol. 213, p. 13-23. https://doi.org/10.1016/j.geomorph.2013.12.037

Jadambaa, N. 2009. Hydrogeology. Byamba, J. (Ed.) Geology and Mineral Resources of Mongolia, vol. VIII, Soyombo Printing, Ulaanbaatar, p. 215-216. (in Mongolian)

Jensen, J.R. 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, Second Edition, Prentice-Hall Inc., p. 233-239. ISBN0-13-145361-0

Karatas, A., Boulton, S. 2019. Morphometric cKharacteristics of alluvial fans in Southern Turkey: implications for fault activity in the Anatolia, Arabia, Africa Triple Junction Region. Academia Journal of Environmental Sciences, vol. 7(3), p. 9-29. https://pearl.plymouth.ac.uk/gees-research/704/

Klein, M. 2001. Inland dunes in northern Central Asia. Uvs Nuur Basin, northwestern Mongolia. Geographical Institute of the Johannes Gutenberg University, p.116-124 (in German)

Klinge, M., Sauer, D. 2019. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia-a critical review and synthesis. Quaternary Science Reviews, vol. 210, p. 26-50. https://doi.org/10.1016/j.quascirev.2019.02.020

Klinge, M., Schneider, F., Li, Y., Frechen, M., Sauer, D. 2022. Variations in geomorphological dynamics in the northern Khangai Mountains, Mongolia, since the Late Glacial period. Geomorphology, vol. 401, 108113. https://doi.org/10.1016/j.geomorph.2022.108113

Lamb, M.A., Hanson, A.D., Graham, S.A., Badarch, G. Webb, L.E. 1999. Left-lateral sense offset of upper Proterozoic to Paleozoic features across the Gobi Onon, Tost, and Zuunbayan faults in southern Mongolia and implications for other Central Asian faults. Earth and Planetary Science Letters, vol. 173(3), p. 183-194. https://doi.org/10.1016/S0012-821X(99)00227-7

Launay, M., Guerif, M. 2005. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agriculture, Ecosystems & Environment, vol. 111(1-4), p. 321-339. https://doi.org/10.1016/j.agee.2005.06.005

Lehmkuhl, F., Grunert, J., Hülle, D., Batkhishig, O., Stauch, G. 2018. Paleolakes in the Gobi region of southern Mongolia. Quaternary Science Reviews, vol. 179, p. 1-23. https://doi.org/10.1016/j.quascirev.2017.10.035

Maliqi, E., Kumar, N., Latifi, L., Singh, S.K. 2023. Soil Erosion Estimation Using an Empirical Model, Hypsometric Integral and Geo-Information Science - A Case Study. Ecological Engineering & Environmental Technology, vol, 24(4), p. 62-72. https://doi.org/10.12912/27197050/161957

Mats, V.D. 1993. The structure and development of the Baikal rift depression. Earth-Science Reviews, vol. 34(2), p. 81-118. https://doi.org/10.1016/0012-8252(93)90028-6

Nissen, E., Emmerson, B., Funning, G.J., Mistrukov, A., Parsons, B., Robinson, D.P., Wright, T.J. 2007. Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes—dextral strike-slip and anticlockwise rotations in the northern India–Eurasia collision zone. Geophysical Journal International, vol. 169(1), p. 216-232. https://doi.org/10.1111/j.1365-246X.2006.03286.x

Nixon, M., Aguado, A. 2019. Feature Extraction and Image Processing for Computer Vision. Academic Press is an imprint of Elsevier, p. 344-356. eBook ISBN: 9780128149775

Onorato, M.R., Coronato, A., Perucca, L.P., Rabassa, J., López, R. 2017. Morpho-bathymetry and surficial morphology of Udaeta Lake, along the Magallanes-Fagnano fault system, Tierra del Fuego, Argentina. Journal of South American Earth Sciences, vol. 76, p. 1-10. https://doi.org/10.1016/j.jsames.2017.02.001

Phillips, J.D. 2000. Locating magnetic contacts: A comparison of the horizontal gradient, analytic signal, and local wavenumber methods. SEG Technical Program Expanded Abstracts, p. 402-405. https://doi.org/10.1190/1.1816078

Salem, A., Williams, S., Fairhead, D., Smith, R., Ravat, D. 2008. Interpretation of magnetic data using tilt-angle derivatives. Geophysics, vol. 73(1), p. 14JF-Z11. https://doi.org/10.1190/1.2799992

Samozvantsev, B.A., Tsukernik, A.B., Golyakov, B.I. 1981. Results of 1:200 000 scale geological mapping and general prospecting in Great Lakes depression of western branches of Khangay Highland. Ulaanbaatar, Geologic Information Center Open-File Report #3576, 1036 p.

Selivanov, E.I. 1972. Neotectonics and Geomorphology of the Mongolian People's Republic, Nedra, p. 231-244 (in Russian)

Sevastyanov, D.V., Shuvalov, V.F., Neustrueva, I.Y. 1994. Limnology and Paleolimnology of Mongolia. St. Petersburg, p. 59-94 (in Russian)

Shamir, G. 2006. The active structure of the Dead Sea Depression. Special Papers-Geological Society of America, vol. 401, p. 15-27. https://doi.org/10.1130/2006.2401(02)

Shinneman, A.L., Almendinger, J.E., Umbanhowar, C.E., Edlund, M.B., Nergui, S. 2009. Paleolimnologic evidence for recent eutrophication in the Valley of the Great Lakes (Mongolia). Ecosystems, vol. 12(6), p. 944-960. https://doi.org/10.1007/s10021-009-9269-x

Strahler, A.N. 1964. Quantitative Geomorphology of Drainage Basin and Channel Networks. In: Chow, V. (Ed.) Handbook of Applied Hydrology, McGraw Hill, New York, p. 439-476.

Studinger, M., Karner, G.D., Bell, R.E., Levin, V., Raymond, C.A., Tikku, A.A. 2003. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth and Planetary Science Letters, vol. 216(4), p. 663-677. https://doi.org/10.1016/S0012-821X(03)00548-X

Theilen-Willige, B., Aher, S.P., Gawali, P.B., Venkata, L.B. 2016. Seismic hazard analysis along Koyna Dam area, western MaKharashtra, India: A contribution of remote sensing and GIS. Geosciences, vol. 6(2), 20. https://doi.org/10.3390/geosciences6020020

Tsagaan, B., Chimed, O., Tsermaa, B., Khukhuudei, U. 2024. The crustal thickness and Vp/Vs ratio in Mongolia. Geodynamics & Tectonophysics, vol. 15(4), 6. https://doi.org/10.5800/GT-2024-15-4-0771

Tsegmid, S. 1969. Physical geography of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia. p. 23-103 (in Mongolian)

Tserensodnom, J. 1971. Lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia, p. 7-54 (in Mongolian)

Tserensodnom, J. 2000. Catalog of lakes of Mongolia. Mongolian Academy of Sciences, Institute of Geography and Permafrost. Ulaanbaatar, Mongolia p. 55-109 (in Mongolian)

Tumur, S., Batmunkh, E., Ganbat, Ch., Jargal, O., Batsukh, E., Munkhbat. P. 2016. Songino-Tarvagatai- Baidrag (M-47-XXXI) series, geological map scale 1:200 000. Tumurtogoo, O., Dorjnamjaa, D., Orolmaa, D., Chuluun, D., Ariunchimeg. Ya. (Eds.) Mongolian Geodatabase, Magma Mines LLC, Mineral Resources and Petroleum Authority of Mongolia, Ministry of Mining and Heavy Industry.

Walker, R.T., Molor, E., Fox, M., Bayasgalan, A. 2008. Active tectonics of an apparently aseismic region: distributed active strike-slip faulting in the Hangay Mountains of central Mongolia. Geophysical Journal International, vol. 174(3), p. 1121-1137. https://doi.org/10.1111/j.1365-246X.2008.03874.x

Walker, R.T., Nissen, E., Molor, E., Bayasgalan, A. 2007. Reinterpretation of the active faulting in central Mongolia. Geology, vol. 35(8), p. 759-762. https://doi.org/10.1130/G23716A.1

Walther, M. 2010. Paleo-Environmental Changes in the Uvs Nuur Basin (Northwest-Mongolia). Exploration into the Biological Resources of Mongolia, p. 267-279. ISSN 0440-1298

Yang, X., Li, W., Qin, Z. 2015. Calculation of reverse-fault-related parameters using topographic profiles and fault bedding. Geodesy and Geodynamics, vol. 6(2), p. 106-112. https://doi.org/10.1016/j.geog.2014.09.002

Published

2025-06-18

How to Cite

Enkhbold, A., Khukhuudei, U., Seong, Y. B., Badarch , D., Tsedevdorj , S.-O., Batbold, B., & Ganbold , B. (2025). Impact of faulting on the depression morphology of Ulaagchinii Khar Lake in Mongolia. Mongolian Geoscientist, 30(61), 14–32. https://doi.org/10.5564/mgs.v30i61.3855

Issue

Section

Articles