Eco-friendly synthesis of azo Schiff base ligand and its metal complexes: Anticancer, antidiabetic and antimicrobial activities

Authors

DOI:

https://doi.org/10.5564/mjc.v26i53.3791

Keywords:

Grinding, coordination, spectroscopy, stability, standard drug

Abstract

Now a days Cancer, Diabetics and other diseases are become major issue of the society. Due to this synthesis of potential medicines against it is a major challenge to the researcher and hence Schiff base ligand became an attracting class of researcher. The azo Schiff base ligands are most widely used in various fields such as medicinal, pharmacological, biological etc. due to its broad spectrum of biological activity. In this research paper we have synthesized the Azo-Schiff base ligand and its transition metal complexes by simple griding method. Synthesis via green approach and biological evolution of azo-Schiff base ligand and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and VO(II) metal complexes. These compounds were characterized by Mass, 1H-NMR, FT-IR, Elemental analysis, Molar conductance, magnetic susceptibility, UV-Vis., P-XRD, TGA etc. and were screened for biological activities. Synthesised azo-Schiff base ligand and it’s metal complexes were evaluated for their antimicrobial, antidiabetic as well as anticancer activities against various bacteria and fungi, acarbose and MCF-7 breast cancer cell line respectively. From the findings of various results we can conclude that the synthesized metal complexes exhibit higher biological activities than that of azo-Schiff base ligand.

Downloads

Download data is not yet available.
Abstract
67

References

1. Singh H.L., Khaturia S., Solanki V.S., Sharma N. (2023) Synthesis of coordination compounds of dibutyltin(IV) with Schiff bases having nitrogen donor atoms. Journal of the Indian Chemical Society, 100. https://doi.org/10.1016/j.jics.2023.100945

2. Debaraj B., Raj P., Badekar R., Momin K. I., Bondge A.S., et al. (2024) Synthesis, spectral and biological studies of Co(II), Fe(II), Ni(II), Cu(II), Pd(II), Mn(II), Hg(II), Cd(II), and Zn(II) complexes derived from benzohydrazide Schiff base. J. Applied Org. Chem. 4(1), 76-87. https://doi.org/10.48309/JAOC.2024.434283.1156

3. Radha V.P., Prabakaran M. (2022) Novel thiadiazole-derived Schiff base ligand and its transition metal complexes: thermal behaviour, theoretical study, chemo-sensor, antimicrobial, antidiabetic and anticancer activity. Appl. Organomet. Chem. 36(11), e6872, https://doi.org/10.1002/aoc.6872.

4. Halim S.A., Shebl M. (2021) Synthesis, spectral, structural, DFT and NLO studies of cerium(III) and thorium(IV) complexes of 1-(5-(1-(2-aminophenylimino)ethyl)-2,4- dihydroxyphenyl)ethenone. J. Coord. Chem. 74, 2984–3001. https://doi.org/10.1080/00958972.2021.2020259.

5. Shebl M. (2016) Mononuclear, homo- and hetero-binuclear complexes of 1-(5-(1-(2- aminophenylimino)ethyl)-2,4-dihydroxyphenyl)ethanone: Synthesis, magnetic, spectral, antimicrobial, antioxidant, and antitumor studies. J. Coord. Chem. 69(2), 199–214, https://doi.org/10.1080/00958972.2015.1116688.

6. Adly O.M.I., Shebl M., Abdelrhman E.M., El-Shetary B.A. (2020) Synthesis, spectroscopic, X-ray diffraction, antimicrobial and antitumor studies of Ni(II) and Co(II) complexes derived from 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone and ethylenediamine. J. Mol. Struct. 1219, 128607, https://doi.org/10.1016/j.molstruc.2020.128607.

7. Tahmineh K., Mohammad H., Hassan H., Hasan A.H. (2023) Synthesis, characterization, and antimicrobial studies on a new Schiff base complex of vanadium (V). Chemical Methodology, 7, 748-760. https://doi.org/10.48309/chemm.2023.414603.1718

8. Dolan C., Glynn R., Griffin S., Conroy C., Loftus C. (2018) Brain complications of diabetes mellitus: A cross-sectional study of awareness among individuals with diabetes and the general population in Ireland. Diabet. Med. 35(7), 871–879, https://doi.org/10.1111/dme.13639.

9. Miyazaki R., Yasui H., Yoshikawa Y. (2016) α-Glucosidase inhibition by new Schiff base complexes of Zn(II). Open J. Inorg. Chem. 6, 114–124. https://doi.org/10.4236/ojic.2016.62007.

10. Akila E., Usharani M., Maheswaran P., Rajavel R., (2013). Spectral, magnetic, biocidal screening and DNA cleavage studies of binuclear metal (ii) complexes of tetracoordinate Schiff base ligand of 3, 3′-dihydroxybenzidine. International Journal of Recent Scientific Research,4(10),14971503.https://www.recentscientific.com/sites/default/files/Download_629.pdf

11. Veeravel C., Rajasekar K., Chakkaravarthy P., Selvarani R., Kosiha A., Sathya V. (2023) Eco-friendly synthesis of Schiff base Mn(II) and Cu(II) complexes: Antimicrobial, antifungal, molecular docking and anticancer studies. Research Square. 2693. https://doi.org/10.21203/rs.3.rs-2680647/v1

12. Wanjari P., Bharati A., Ingle V. (2021) Synthesis, characterization and in vitro antibacterial activities of Cu(II) and Ni(II) complexes of N-(benzo[d]thiazol-2-ylcarbamothioyl)benzamide. Malaysian J. Chem., 23(3), 23-33. https://ikm.org.my/publications/malaysian-journal-of-chemistry/view-abstract.php?abs=J0035-C0R305

13. Ummi L.M.R., Karima K., Amalina M.T., Muhamad K.Y., Zakaria N.A. (2022) Synthesis, characterization, DFT and antibacterial screening of Schiff base derived from isatin with thiocarbohydrazide and their Cu(II) and Zn(II) complexes. Malaysian J. Chem., 24(2), 250-257. https://doi.org/10.55373/mjchem.v24i2.250

14. Zemede Y., Ananda K.S., (2015) Synthesis, characterization, corrosion inhibition and biological evaluation of Schiff bases. Int. J. Chem. Tech. Res. 7(1), 7279–7286. https://sphinxsai.com/2015/ch_vol7_no1/4/(279-286)%20014.pdf

15. Jarrahpour A., De Clercq E., Salmi C., Brunel J. (2007) Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-schiff bases of isatin and their derivatives. molecules. 12(8), 1720–1730, https://doi.org/10.3390/12081720

16. Kala A., Kumara K., Harohally N., Lokanath N. (2020) Synthesis, characterization and hydrogen bonding attributes of halogen bonded O-hydroxy Schiff bases: Crystal structure, Hirshfeld surface analysis and DFT studies. J. Mol. Struct., 1202, 127238, https://doi.org/10.1016/j.molstruc.2019.127238

17. Rajarajeswari C., Loganathan R., Palaniandavar M., Suresh E., Riyasdeend A., Akbarsha M.A. (2013) Copper(II) complexes with 2NO and 3N donor ligands: Synthesis, structures and chemical nuclease and anticancer activities. Dalton Trans., 42(23), 8347–8363, https://doi.org/10.1039/C3DT32992E

18. Abbas G., Irfan A., Ahmed I., Al-Zeidaneen F.K., Muthu S., Fuhr O., Thomas R. (2022) Synthesis and investigation of anti-COVID19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking. J. Mol. Struct., 1253, https://doi.org/10.1016/j.molstruc.2021.132242

19. Sert Y., Gumus M., Gokce H., Kani I., Koca I. (2018) Molecular docking, Hirshfeld surface, structural, spectroscopic, electronic, NLO and thermodynamic analyses on novel hybrid compounds containing pyrazole and coumarin cores. J. Mol. Struct., 1171, 850–866, https://doi.org/10.1016/j.molstruc.2018.06.069.

20. Ceyhan G., Celik C., Urus S., Demirtas I., Elmastas M., Tümer M. (2011) Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes. Spectrochem. Acta Part A, 81, 184–198. https://doi.org/10.1016/j.saa.2011.05.106.

21. Tümer M. (2011) Synthesis and characterization of the transition metal complexes: Their alcohol oxidation and electrochemical properties. Inorg. Met. Org. Nano-Met. Chem., 41, 211–223. https://doi.org/10.1080/15533174.2010.538288.

22. Varshney A. K., Varshney S., Sharma M., Singh H. L. (2000) Synthetic, spectral and biological studies of organosilicon (iv) complexes with Schiff bases of sulfa drugs. Phosphorus, Sulfur, and Silicon, 161, 163–172. https://doi.org/10.1080/10426500008042104.

23. Takaya J. (2021) Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci., 12, 1964–1981. https://doi.org/10.1039/D0SC04238B.

24. Rabiee N., Safarkhani M., Amini M.M. (2019) Investigating the structural chemistry of organotin(IV) compounds: recent advances. Recent Advances, Rev. Inorg. Chem. 39, 13–45. https://doi.org/10.1515/revic-2018-0014.

25. Suzuki A., Guo X., Lin Z., Yamashita M. (2021) Nucleophilic reactivity of the gold atom in a diarylborylgold(i) complex toward polar multiple bonds. Chem. Sci., 12 917–928. https://doi.org/10.1039/D0SC05478J.

26. Soni K., Saxena S., Jain A. (2022) Recent advances in DFT assisted optimized energy, stability and distortions of optimized topologies of certain biopotent dimethyltin(IV) complexes. J. Indian Chem. Soc., 99, 100332, https://doi.org/10.1016/j.jics.2021.100332

27. Peters B., Lichtenberger N., Dornsiepen E., Dehnen S. (2020) Current advances in tin cluster chemistry. Chem. Sci., 11, 16–26, https://doi.org/10.1039/C9SC04363B.

28. Wang R., Lee S. C., Lu Z. (2023) Recent development of three-coordinated boron-doped aromatics for optoelectronic applications. J. Organomet. Chem., 984, 122564. https://doi.org/10.1016/j.jorganchem.2022.122564.

29. Hanadi K., Ahmed M. H., Arwa A., Fatmah A., Reem S., et al. (2020) Green synthesis strategy for new Schiff-base complexes: Characterization, conductometry, in vitro assay confirmed by in silico approach. Chemistry Select, 5, 10256-10268. https://doi.org.101002/slct.202002388.

30. Tiekink E.R.T. (2008) Tin dithiocarbamates: Applications and structures. Appl. Organomet. Chem., 22, 533–550. https://doi.org/10.1002/aoc.1441.

31. Alexeev Y.E., Kharisov B.I., Hernandez Garca T.C., Garnovskii A.D. (2010) Coordination motifs in modern supramolecular chemistry. Coord. Chem. Rev., 254, 974-831. https://doi.org/10.1016/j.ccr.2009.12.003.

32. Sarwade K.N., Sakhare K.B., Sakhare M.A., Thakur S.V. (2024) Synthesis of metal-based biologically active agents from ONO-donor Schiff base ligand. Mongolian journal of chemistry, 25(52), 10-18. https://doi.org/10.5564/mjc.v25i52.3537

33. Sasikumar G., Balaji T.N., Ibrahim Sheriff A.K. (2018) Synthesis, characterization, dna binding and antimicrobial activity of tridentate Schiff base ligand and its cobalt(II) complexes. World J. Pharm. Res., 7, 564. https://doi:10.20959/wjpr20188-11221

34. Devi J., Yadav M., Kumar D., Naik L.S., Jindal D.K. (2018) Some divalent metal(II) complexes of salicylaldehyde‐derived Schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem., 33, 4693. https://doi.org/10.1002/aoc.4693

35. Shinde A. H., Patil C.J. (2020) Synthesis and characterization of azo Schiff bases and their β-Lactam derivatives. Asian J. Chem., 32 1520. https://doi.org/10.14233/ajchem.2020.22657%20

36. Jain R.K., Mishra A.P. (2012) Microwave synthesis and spectral, thermal and antimicrobial activities of some novel transition metal complexes with tridentate Schiff base ligands. J. Serb. Chem. Soc., 77, 1013-1029. http://dx.doi.org/10.2298/JSC111001023J

37. Sarwade K.N., Sakhare K.B., Sakhare M.A., Thakur S.V. (2024) Anti-alzheimer, anticancer and antimicrobial assessment of novel tridentate azo-schiff base ligand and it’s metal complexes. Heterocyclic letters, 14(04), 797-811. http://heteroletters.org/pdf-8

38. Sawant R., Wadekar J., Ukirde R., Barkade G. (2021) Synthesis, molecular docking and anticancer activity of novel 1,3-thiazolidin-4-ones. Pharm. Sci., 27, 345-352. http://dx.doi.org/10.34172/PS.2020.95

39. Kalluru S., Dammu L.K., Nara S.K., Jyotinimmagadda V.V. (2023) Synthesis and characterization of Schiff base, 3-hydroxy-4-(3-hydroxybenzylidene amino) benzoic acid and their Ni(II) and Zn(II) metal complexes. J. Adv. Sci. Res., 14, 35-39. https://doi.org/10.55218/JASR.202314105

40. Sarwade K.N., Sakhare K.B., Sakhare M.A., Thakur S.V. (2025) Neuroprotective, anticancer and antimicrobial activities of Azo-schiff base ligand and its metal complexes. Eurasian Journal of Chemistry, 30, 1(117), 4‒14. https://doi.org/10.31489/2959-0663/1-25-8

41. Tunde L.Y., Ibrahim W., Kolawole A.O., Eric O.A., Eric C.H. (2022) Evaluating the in vitro antidiabetic, antibacterial and antioxidant properties of copper(II) Schiff base complexes: An experimental and computational studies. Journal of Molecular Liquids, 389, 122845. https://doi.org/10.1016/j.molliq.2023.122845

Published

2025-05-20

How to Cite

Sakhare, K. B., Sarwade, K. N., Bharate, Y. N., & Sakhare, M. A. (2025). Eco-friendly synthesis of azo Schiff base ligand and its metal complexes: Anticancer, antidiabetic and antimicrobial activities. Mongolian Journal of Chemistry, 26(53), 40–48. https://doi.org/10.5564/mjc.v26i53.3791

Issue

Section

Articles