Analysis of <i>Solanum torvum</i> leaves: GC-MS profiling, in vitro and in vivo bioactivity assessment, in silico ADME/T predictions and molecular docking
DOI:
https://doi.org/10.5564/mjc.v26i53.3894Keywords:
Solanum torvum, antioxidant, Thrombolytic, analgesic, GC-MS analysisAbstract
This research investigates the phytochemical, antioxidant, thrombolytic, and analgesic activities of the ethanolic extract from the leaves of Solanum torvum (S. torvum). 42 bioactive chemicals were identified by phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The compounds included bis(2-Ethylhexyl) phthalate, hexadecanoic acid, and 2R-Acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol. S. torvum showed potent antioxidant activity, with an IC50 value of 124.7 μg/mL, and significant thrombolytic potential, displaying 78.10% clot lysis at 1000 μg/mL. In the acetic acid-induced writhing test on Swiss Albino mice, S. torvum at a 400 mg/kg dose greatly reduced writhing by 60%, similar to diclofenac-Na (50 mg/kg). Replace additionally, molecular docking studies revealed strong binding scores of key compounds to targets such as tissue plasminogen activator and COX-2. ADME/T analysis further suggested their drug-likeness, safety, and pharmacological potential. These findings substantiate the therapeutic value of S. torvum in medicinal research and drug development. This study is novel for its integrated approach, combining phytochemical analysis, in vitro and in vivo assays, and in silico modeling. It identifies 42 compounds in S. torvum leaves, many newly reported, and demonstrates strong thrombolytic and analgesic activities, supported by molecular docking, highlighting its drug development potential.
Downloads
66
References
1. Chidambaram K., Alqahtani T., Alghazwani Y., Aldahish A., Annadurai S., et al. (2022) Medicinal plants of solanum species: The promising sources of phyto-insecticidal compounds. J. Trop. Med., 4952221. https://doi.org/10.1155/2022/4952221
2. Yunta M. (2017) It is important to compute intramolecular hydrogen bonding in drug design? Am. J. Model Optim., 5, 24–57. https://doi.org/10.12691/ajmo-5-1-3
3. Darkwah W.K., Koomson D.A., Miwornunyuie N, Nkoom M, Puplampu J.B. (2020) Review: Phytochemistry and medicinal properties of Solanum torvum fruits. All Life, 13(1), 498-506. https://doi.org/10.1080/26895293.2020.1817799
4. Wang H., Zhang Y., Feng X., Peng F., Mazoor M.A., et al. (2022) Analysis of the β-glucosidase family reveals genes involved in the lignification of stone cells in chinese white pear (Pyrus bretschneideri Rehd.). Front. Plant Sci., 13, 95-101. https://doi.org/10.3389/fpls.2022.852001
5. Yousaf Z., Wang Y., Baydoun E. (2013) Phytochemistry and pharmacological studies on Solanum torvum Swartz. J. Appl. Pharm. Sci., 3, 152-60. https://doi.org/10.7324/JAPS.2013.3428
6. Elizalde-Romero C.A., Montoya-Inzunza L.A., Contreras-Angulo L.A., Heredia J.B., Gutiérrez-Grijalva E.P. (2021) Solanum fruits: Phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Front. Nutr., 8, 790582. https://doi.org/10.3389/fnut.2021.790582
7. Lu Y.Y., Luo J.G., Kong L.Y. (2011) Chemical constituents from Solanum torvum. Chin. J. Nat. Med., 9, 30-2. https://doi.org/10.1016/S1875-5364(11)60015-0
8. Arthan D., Kittakoop P., Esen A., Svasti J. (2006) Furostanol glycoside 26-O-β-glucosidase from the leaves of Solanum torvum. Phytochemistry, 67, 27-33. https://doi.org/10.1016/j.phytochem.2005.09.035
9. Abraham J.D., Sekyere E.K., Gyamerah I. (2022) Effect of boiling on the nutrient composition of Solanum Torvum. Int. J. Food Sci., 1, https://doi.org/10.1155/2022/7539151
10. Chah K.F., Muko K.N., Oboegbulem S.I. (2000) Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia, 71, 187-9. https://doi.org/10.1016/S0367-326X(99)00139-2
11. Nguta J.M., Appiah-Opong R., Nyarko A.K., Yeboah-Manu D., Addo P.G.A., et al. (2016) Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J. Ethnopharmacol., 182, 10-5. https://doi.org/10.1016/j.jep.2016.02.010
12. Sivapriya M, Leela S. (2007) Isolation and purification of a novel antioxidant protein from the water extract of Sundakai (Solanum torvum) seeds. Food Chem., 104, 510-7. https://doi.org/10.1016/j.foodchem.2006.11.060
13. Ramamurthy C.H., Kumar M.S., Suyavaran V.S.A., Mareeswaran R., Thirunavukkarasu C. (2012) Evaluation of antioxidant, radical scavenging activity and polyphenolics profile in Solanum torvum L. fruits. J. Food Sci., 77(8), C907-13. https://doi.org/10.1111/j.1750-3841.2012.02830.x
14. Satyanarayana N., Chinni S.V., Gobinath R., Sunitha P., Uma Sankar A. et al. (2022) Antidiabetic activity of Solanum torvum fruit extract in Streptozotocin-induced diabetic rats. Front Nutr., 9, 1-11. https://doi.org/10.3389/fnut.2022.987552
15. Khunbutsri D., Naimon N., Satchasataporn K., Inthong N., Kaewmongkol S., et al. (2022) Antibacterial activity of Solanum torvum leaf extract and its synergistic effect with oxacillin against methicillin-resistant Staphyloccoci isolated from dogs. Antibiotics, 11(3), 302. https://doi.org/10.3390/antibiotics11030302
16. Ndebia E.J., Kamgang R., Nkeh-Chungag Anye B.N. (2007) Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). African J. Tradit. Complement. Altern. Med., 4, 240-4. https://doi.org/10.4314/ajtcam.v4i2.31214
17. Benjamin M.A.Z., Ng S.Y., Saikim F.H., Rusdi N.A. (2022) The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules, 27, 1-23. https://doi.org/10.3390/molecules27196458
18. Ahmed M., Ji M., Qin P., Gu Z., Liu Y., et al. (2019) Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl. Ecol. Environ. Res., 17, 6961-79. https://doi.org/10.15666/aeer/1703_69616979
19. Auwal M.S., Saka S., Mairiga I.A., Sanda K.A., Shuaibu A., et al. (2014) Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum, 5(2), 95-100.
20. Ali S., Khan M.R., Sajid M.I., Zahra Z. (2018) Phytochemical investigation and antimicrobial appraisal of Parrotiopsis jacquemontiana (Decne) Rehder. BMC Complement Altern. Med., 18, 43. https://doi.org/10.1186/s12906-018-2114-z
21. María R., Shirley M., Xavier C., Jaime S., David V., et al. (2018) Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province, Ecuador. J. King Saud Univ. Sci., 30(4), 500-5. https://doi.org/10.1016/j.jksus.2017.03.009
22. Zilani M.N.H., Islam M.A., Biswas P., Anisuzzman M., Hossain H., et al. (2021) Metabolite profiling, anti-inflammatory, analgesic potentials of edible herb Colocasia gigantea and molecular docking study against COX-II enzyme. J. Ethnopharmacol., 281, 114577 https://doi.org/10.1016/j.jep.2021.114577
23. Baliyan S., Mukherjee R., Priyadarshini A., Vibhuti A., Gupta A., et al. (2022) Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27, 1326. https://doi.org/10.3390/molecules27041326
24. Hussain F., Islam M., Bulbul L., Rahman Moghal M., et al. (2014) In vitro thrombolytic potential of root extracts of four medicinal plants available in Bangladesh. Anc. Sci. Life, 33, 162. https://doi.org/10.4103/0257-7941.144620
25. Gawade S.P. (2012) Acetic acid-induced painful endogenous infliction in writhing test on mice. J. Pharmacol. Pharmacother., 3, 348. https://doi.org/10.4103/0976-500X.103699
26. Wojcik M., Burzynska-Pedziwiatr I., Wozniak L.A (2010) Review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem., 17, 3262-88. https://doi.org/10.2174/092986710792231950
27. Zhou D.D., Luo M., Shang A., Mao Q.Q., Li B.Y., et al. (2021) Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxid. Med. Cell Longev., 21(1), 6627355 https://doi.org/10.1155/2021/6627355
28. Roy A., Khan A., Ahmad I., Alghamdi S., Rajab B.S., et al. (2022) Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed. Res. Int., 2022(1), 5445291. https://doi.org/10.1155/2022/5445291
29. Hussen E.M., Endalew S.A. (2023) In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement. Med. Ther., 23, 146 https://doi.org/10.1186/s12906-023-03923-y
30. Kedare S.B., Singh R.P. (2011) Genesis and development of DPPH method of antioxidant assay. J. Food. Sci. Technol., 48, 412-22. https://doi.org/10.1007/s13197-011-0251-1
31. Kruk J., Aboul-Enein B.H., Duchnik E., Marchlewicz M. (2022) Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J. Physiol. Sci., 72(1), 19. https://doi.org/10.1186/s12576-022-00845-1
32. Adegbola P., Aderibigbe I., Hammed W., Omotayo T. (2017) Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am. J. Cardiovasc. Dis., 7(2), 19-32.
33. Anupama N., Madhumitha G., Rajesh K.S. (2014) Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. Biomed. Res. Int., 12-36. https://doi.org/10.1155/2014/512369
34. De Souza É.T., De Lira D.P., De Queiroz A.C., Da Silva D.J.C., De Aquino A.B., et al. (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar. Drugs, 7, 689-704. https://doi.org/10.3390/md7040689
35. Adnan M., Nazim Uddin Chy M., Mostafa Kamal A.T.M., Azad M.O.K, Paul A., et al. (2019) Investigation of the biological activities and characterization of bioactive constituents of Ophiorrhiza rugosa var. prostrata (D.Don) & Mondal leaves through in vivo, in vitro, and in silico approaches. Molecules, 24, 1367. https://doi.org/10.3390/molecules24071367
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nazmun Nahar, Beethi Barua, Joya Data Ripa, Ankita Dutta, Abul Kalam Azad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any research article in the Mongolian Journal of Chemistry is retained by the author(s).
The authors grant the Mongolian Journal of Chemistry a license to publish the article and identify itself as the original publisher.

Articles in the Mongolian Journal of Chemistry are Open Access articles published under a Creative Commons Attribution 4.0 International License CC BY.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.