C, N and P acquiring enzyme activities along climatic gradients in Mongolia
DOI:
https://doi.org/10.5564/pib.v40i1.4006Keywords:
Soil enzymes, β-Glucosidase, Leucine aminopeptidase, N-Acetylglucoseaminidase, Acid phosphataseAbstract
Soil extracellular enzymes are vital indicators of microbial activity and nutrient cycling and significantly influence soil organic matter (SOM) decomposition. Climate and soil resources contribute to the variations of enzyme activities and, thus, regulate the SOM decomposition. This study investigates the activities of carbon (C), nitrogen (N), and phosphorus (P) acquisition enzymes across different soil depths (0–15 and 15–30 cm) and environmental gradients in Mongolia. Soil samples were collected from 26 sites, with contrasting precipitation and temperature levels, and SOM contents. Our results revealed overall higher activities of C- and P-acquiring enzymes and lower activities (1.9–561.4 and 25.4–536.3 nmol g-1 h-1) of N-acquiring enzymes (6.07–146.2 nmol g-1 h-1). The enzyme activities were significantly higher in the 0–15 cm layer at most sampling sites. Correlation analyses revealed strong positive effects of mean annual precipitation (MAP) (Pearson r= 0.76; 0.95) and negative effects of mean annual temperature (MAT) (r= -0.65; -0.61) on C- and P-acquiring enzyme activities at both soil depths, whereas N-acquiring enzyme activity was significantly influenced by climate only in the 0–15 cm layer. Soil resources (SOM and TN) were positively correlated (r= 0.41–0.93) with the enzyme activities. The results indicate that soil microbial communities might be investing more resources in C and P acquisition in Mongolian steppes. Both climate and soil resources influence the enzyme activities, but the relative contributions of MAT and MAP to the variations in the enzyme activities were highest in 0–15 cm and 15–30 cm layers, respectively. Overall, the results imply that predicted warming and changes in precipitation patterns could affect the SOM stock in SOM-rich areas in Mongolia, especially in topsoils.
C, N, P-ын эргэлтэд оролцдог хөрсний энзимийн идэвхийг уур амьсгалын градиентын дагуу судалсан үр дүн
Хураангуй. Хөрсний энзим нь хөрсний бичил биетний үйл ажиллагаа, шим тэжээлийн нэгдлийн эргэлтийн чухал индикатор байхаас гадна хөрсний органик нэгдлийн задралын төлвийг илтгэдэг. Хөрсний энзим нь уур амьсгалын нөлөөнд мэдрэг тул уур амьсгал өөрчлөгдөхөд органик нэгдлүүдийн задралд хэрхэн нөлөөлөхийг судлах боломж олгодог. Энэ зорилгоор бид хур тунадас болон температурын ялгаатай 26 цэгээс, хөрсний хоёр өөр гүн (0–15 см болон 15–30 см)-ээс цуглуулсан дээжид нүүрстөрөгч (C), азот (N), фосфор (P)-ын эргэлтэд оролцдог дөрвөн энзимийн идэвхийг судлав. Судалгаагаар С болон P- ын эргэлтэд оролцдог энзимийн идэвх (1.9–561.4 ба 25.4–536.3 нмоль г-1 ц-1), N-ын эргэлтэд оролцдог энзимийн идэвх (6.07–146.2 нмоль г-1 ц-1)-ээс харьцангуй өндөр, хөрсний 0–15 см гүнд идэвх нь нэмэгдэж байна. Хөрсний хоёр гүний аль алинд нь C, P-ын эргэлтэд оролцдог энзимийн идэвх олон жилийн дундаж хур тунадас (цаашид хур тунадас гэх)-тай эерэг (Пирсон r= 0.76; 0.95) харин олон жилийн дундаж температур (цаашид температур гэх)-тай сөрөг хамааралтай (r= -0.65; -0.61) байгаа зүй тогтол илрэв. N-ын эргэлтэд оролцдог энзимийн идэвхийн хувьд хөрсний 0–15 см-ийн гүнд дээрхтэй ижил зүй тогтол тодорхойлогдсон бол 15–30 см-ийн гүнд уур амьсгалын нөлөө илрээгүй. Харин хөрсний органик нэгдэл, нийт азот нь бүх энзимийн идэвхтэй эерэг (r= 0.41–0.93) хамааралтай байна. Уур амьсгал, хөрсний органик нэгдэл энзимийн идэвхэд нөлөөлж байгаа боловч 0–15 см-ийн гүнд температур, 15–30 см-ийн гүнд хур тунадасны нөлөө харьцангуй өндөр байгаа үр дүн гарлаа. Эдгээр үр дүнгээс харахад температур болон хур тунадасны өөрчлөлт нь Монгол орны хувьд органик нэгдлээр баялаг бүсийн хөрсний органик нэгдлийн нөөцөд (ялангуяа өнгөн хөрсний өнгөн давхаргад) сөргөөр нөлөөлж болзошгүй байна.
Түлхүүр үг: β-глюкозидаза, хүчиллэг фосфатаза, лейцин аминопептидаза, N-ацетилглюкозаминидаза, хөрсний энзим
Downloads
104
References
[1] B. G. Waring, S. R. Weintraub, and R. L. Sinsabaugh, “Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils,” Biogeochemistry., vol. 117, no. 1, pp. 101-113, Jan. 2014, https://doi.org/10.1007/s10533-013-9849-x
[2] Z. Xu et al., “Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC),” Soil Biol Biochem., vol. 104, pp. 152-163, Jan. 2017, https://doi.org/10.1016/j.soilbio.2016.10.020
[3] K. Ndabankulu, S. O. Egbewale, Z. Tsvuura, and A. Magadlela, “Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient-poor grassland ecosystem soils,” Sci Rep., vol. 12, no. 1, Dec. 2022, https://doi.org/10.1038/s41598-022-16949-y
[4] Y. Yang, C. Liang, Y. Wang, H. Cheng, S. An, and S. X. Chang, “Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration,” Soil Biol Biochem., vol. 149, Oct. 2020, https://doi.org/10.1016/j.soilbio.2020.107928
[5] F. K. Olagoke, K. Kaiser, R. Mikutta, K. Kalbitz, and C. Vogel, “Persistent activities of extracellular enzymes adsorbed to soil minerals,” Microorganisms, vol. 8, no. 11, pp. 1-15, Nov. 2020, https://doi.org/10.3390/microorganisms8111796
[6] R. L. Sinsabaugh et al., “Stoichiometry of soil enzyme activity at global scale,” Glob.Ecol.Biogeorgr., Nov. 2008. https://doi.org/10.1111/j.1461-0248.2008.01245.x
[7] M. Wiesmeier et al., “Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales,” Geoderma, vol. 338, pp. 83-100, Jan. 01, 2019, https://doi.org/10.1016/j.geoderma.2018.07.026
[8] Y. Cui et al., “Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region,” Sci. Total Environ., vol. 658, pp. 1440-1451, Mar. 2019, https://doi.org/10.1016/j.scitotenv.2018.12.289
[9] J. Ru, Y. Zhou, D. Hui, M. Zheng, and S. Wan, “Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland,” Glob Chang Biol., vol. 24, no. 3, pp. 1001-1011, Mar. 2018, https://doi.org/10.1111/gcb.13941
[10] W. Xiao, X. Chen, X. Jing, and B. Zhu, “A meta-analysis of soil extracellular enzyme activities in response to global change,” Soil Biol Biochem., vol. 123, pp. 21-32, Aug. 2018, https://doi.org/10.1016/j.soilbio.2018.05.001
[11] D. S. Akinyemi, Y. Zhu, M. Zhao, P. Zhang, H. Shen, and J. Fang, “Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia,” Glob Ecol Conserv., vol. 23, Sep. 2020, https://doi.org/10.1016/j.gecco.2020.e01175
[12] J. Bayarmaa and D. Purev, “Enzyme activity of zhargalant farm soil, central province of Mongolia,” Mongolian J. Agric. Sci., vol. 22, no. 03, pp. 109-113, May 2018, https://doi.org/10.5564/mjas.v22i03.953
[13] S. Li et al., “Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats,” Sci. Total Environ., vol. 767, May 2021, https://doi.org/10.1016/j.scitotenv.2021.144966
[14] M. J. J. Hoogsteen, E. A. Lantinga, E. J. Bakker, J. C. J. Groot, and P. A. Tittonell, “Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss,” Eur. J. Soil Sci., vol. 66, no. 2, pp. 320-328, Mar. 2015, https://doi.org/10.1111/ejss.12224
[15] J. M. Bremner and C. S. Mulvaney, Nitrogen-Total. In A.L. Page, R.H. Miller, and D.R. Keeney, Eds., Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties- Agronomy Monograph, vol. 9, pp. 595-624. https://doi.org/10.2134/agronmonogr9.2.2ed.c31
[16] J. Zoljargal and B. Namuun, “Comparison of methods to determine soil available phosphorus,” Mongolian Soil Sci., vol. 4, pp. 107-113, [in Mongolian].
[17] C. R. Jackson, H. L. Tyler, and J. J. Millar, “Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays,” J. Vis Exp., no. 80, 2013, https://doi.org/10.3791/50399
[18] D. S. Allison and M. P. Virousek, “Responses of extracellular enzymes to simple and complex nutrient inputs,” Soil Biol. Biochem., vol. 37, pp. 937-944, 2005. https://doi.org/10.1016/j.soilbio.2004.09.014
[19] D. S. Allison, N. M. B. Weintraub, T. Gartner, and M. P. Waldrop, “Evolutionary-Economic Principles as Regulators of Soil Enzyme Production and Ecosystem Function”, In Soil Enzym, Soil Biol, vol. 22. G. Shukla and A. Varma, Eds., Springer-Verlag Berlin Heidelberg, 2011. https://doi.org/10.1007/978-3-642-14225-3_12
[20] V. L. Cenini et al., “Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils,” Soil Biol. Biochem., vol. 96, pp. 198-206, May 2016, https://doi.org/10.1016/j.soilbio.2016.02.015
[21] Z. Kotroczó et al., “Soil enzyme activity in response to long-term organic matter manipulation,” Soil Biol. Biochem., vol. 70, pp. 237-243, Mar. 2014, https://doi.org/10.1016/j.soilbio.2013.12.028
[22] G. Li, S. Kim, S. H. Han, H. Chang, D. Du, and Y. Son, “Precipitation affects soil microbial and extracellular enzymatic responses to warming,” Soil Biol Biochem., vol. 120, pp. 212-221, May 2018, https://doi.org/10.1016/j.soilbio.2018.02.014
[23] N. C. Dove, M. E. Barnes, K. Moreland, R. C. Graham, A. A. Berhe, and S. C. Hart, “Depth dependence of climatic controls on soil microbial community activity and composition,” ISME Commun., vol. 1, no. 1, Dec. 2021, https://doi.org/10.1038/s43705-021-00081-5
[24] D. Chen et al., “Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau,” Funct. Ecol., vol. 33, no. 8, pp. 1561-1571, 2019, https://doi.org/10.1111/1365-2435.13359
[25] W. Borken and E. Matzner, “Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils,” Glob. Chang. Biol., vol. 15, no. 4, pp. 808-824, 2009, https://doi.org/10.1111/j.1365-2486.2008.01681.x
[26] R. Vargas et al., “Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland,” Glob. Chang. Biol., vol. 18, no. 4, pp. 1401-1411, Apr. 2012, https://doi.org/10.1111/j.1365-2486.2011.02628.x
[27] L. Wang et al., “Extracellular Enzyme Stoichiometry Reveals Soil Microbial Carbon and Phosphorus Limitations in the Yimeng Mountain Area, China,” Forests, vol. 13, no. 5, May 2022, https://doi.org/10.3390/f13050692
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Batsaikhan Khishigmaa, Khandaa Oyukhan, Jambalsuren Bayarmaa, Shagdar Erdenechimeg, Erdenebileg Enkhmaa, Dashnyam Punsaldulam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright on any research article in the Proceedings of the Institute of Biology is retained by the author(s).
The authors grant the Proceedings of the Institute of Biology license to publish the article and identify itself as the original publisher.
![]()
Articles in the Proceedings of the Institute of Biology are Open Access articles published under a Creative Commons Attribution-NonCommercial 4.0 International License - CC BY NC.
This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.